Rutgers University: Algebra Written Qualifying Exam

January 2008: Day 1 Problem 7 Solution

Exercise. Let $\mathbb{Z}^{4}=\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ (also denoted $\mathbb{Z}^{(4)}$). Consider \mathbb{Z}^{4} as an abelian group under addition of coordinates. Let S be the subgroup of \mathbb{Z}^{4} generated by the elements

$$
(5,-2,-4,1), \quad(-5,4,4,1), \quad(0,6,0,6)
$$

Determine the structure of the abelian group \mathbb{Z}^{4} / S as a direct product of cyclic groups.

Solution.

Define $f: \mathbb{Z}^{4} \rightarrow \mathbb{Z}^{4}$ and $S=\operatorname{ker}(f)$.
Goal: nice generators for f.
Let

$$
M=\left[\begin{array}{cccc}
5 & -2 & -4 & 1 \\
-5 & 4 & 4 & 1 \\
0 & 6 & 0 & 6
\end{array}\right]
$$

Allowed Operations:

- add integer multiple of one row or column to another
- swap rows or columns
- multiply row or column by $-1 \leftarrow$ since only ± 1 is invertible in (\mathbb{Z}, \cdot)

$$
\begin{array}{lll}
{\left[\begin{array}{cccc}
5 & -2 & -4 & 1 \\
-5 & 4 & 4 & 1 \\
0 & 6 & 0 & 6
\end{array}\right]} & \stackrel{R_{2}+R_{1} \rightarrow R_{2}}{\sim}
\end{array} \begin{array}{ccc}
{\left[\begin{array}{cccc}
5 & -2 & -4 & 1 \\
0 & 2 & 0 & 2 \\
0 & 6 & 0 & 6
\end{array}\right]} & C_{1}+C_{3} \rightarrow C_{1} \\
\sim
\end{array} \begin{array}{ccc}
\sim
\end{array}\left[\begin{array}{cccc}
1 & -2 & -4 & 1 \\
0 & 2 & 0 & 2 \\
0 & 6 & 0 & 6
\end{array}\right]
$$

$$
\mathbb{Z}_{1} \times \mathbb{Z}_{2} \times \mathbb{Z} \times \mathbb{Z}
$$

